UDDEHOLM BALDER®

UDDEHOLM BALDER

Reliable and efficient steel is essential for good results. The same goes for achieving high productivity and high availability. When choosing the right steel many parameters must be considered, by using superior steel your productivity and your product performance can be greatly improved. With excellent machinability you will spend less time to finish your product, this makes it easier to meet your deadline.

Uddeholm Balder is a steel grade which provides several benefits in applications with high demands on mechanical properties in combination with excellent machinability.

SUPERIOR MACHINABILITY

Superior machinability will give you the advantage of shorter machining time. In turn this means that it will be easier for you to meet your customer demands on delivery time. You will also benefit from lower cutting tool cost and increased availability of your machines. The excellent machinability will be most evident when end milling with small milling cutters and drilling and tapping of small holes.

GOOD MECHANICAL PROPERTIES AT HIGH TEMPERATURES

Uddeholm Balder is an excellent choice for products where good high-temperature strength, temper resistance and high-temperature fatigue are required. It has also very good resistance to abrasion at both low and high temperatures.

UDDEHOLM STEEL FOR INDEXABLE INSERT CUTTING TOOLS

Uddeholm Balder provides longer life and better performance of indexable insert cutting tools such as drills and milling cutters. Uddeholm Balder is eminently suitable for cutting tools subjected to high temperatures and severe chip wear and with high demands on machinability in prehardened condition.

© UDDEHOLMS AB No part of this publication may be reproduced or transmitted for commercial purposes without permission of the copyright holder.

BALDER[®] is a trade mark registered in the European Union.

This information is based on our present state of knowledge and is intended to provide general notes on our products and their uses. It should not therefore be construed as a warranty of specific properties of the products described or a warranty for fitness for a particular purpose.

Classified according to EU Directive 1999/45/EC For further information see our "Material Safety Data Sheets".

Edition 1, 10.2013 The latest revised edition of this brochure is the English version, which is always published on our web site www.uddeholm.com

General

Uddeholm Balder is a chromium-molybdenumvanadium-nickel alloyed high performance tool steel which is characterized by:

- Very good high-temperature strength
- Superb temper resistance
- · Excellent machinability
- Good toughness and ductility
- Good resistance to abrasion at both low and high temperatures

Machinability of the Uddeholm Balder is improved, specially in hardened and tempered condition, which facilitates such operations as drilling and tapping of small holes. It is suitable for induction-hardening and can also be given a PVD coating without reducing the hardness of the tool.

Typical analysis %	C 0.3	Si 0.3	Mn 1.2	Cr 2.3	Mo 0.8	V 0.8	Ni 4.0
Standard specifica- tion	None						
Delivery condition	Hardened to 42–45 HRC Soft annealed on demand						
Colour code	Brown/dark red – hardened Brown/dark blue – soft annealed						

Properties

The reported properties are representative of samples which have been taken from the centre of a 200 mm (8") bar. Unless otherwise is indicated, all specimens are in delivery condition hardened to 42–45 HRC

Physical properties

Data at room and elevated temperatures.

Temperature	20°C (68°F)	400°C (750°F)	600°C (1110°F)
Density kg/m³ lbs/in³	7 810 0.281	7 700 0.277	7 640 0.275
Modulus of elasticity N/mm² psi	210 000 30.5 x 10 ⁶	180 000 26.1 x 10 ⁶	140 000 20.3 × 10 ⁶
Coefficient of thermal expansion per °C from 20°C per °F from 68°F		12.0 x 10 ⁻⁶ 6.6 x 10 ⁻⁶	13.0 x 10 ⁻⁶ 7.2 x 10 ⁻⁶
Coefficient of thermal conductivity W/m °C Btu in/(ft²h°F)		29 204	30 211
Specific heat capacity J/kg °C Btu/ln°F	435 0.104		

Applications

Uddeholm Balder is intended for applications with severe demands on high-temperature strength of the material, while also requiring excellent machinability.

Examples of applications are:

- · Indexable insert drills and milling cutters
- Milling chucks and tool tapers
- Engineering components with severe demands on high temperature strength

Indexable insert milling cutter.

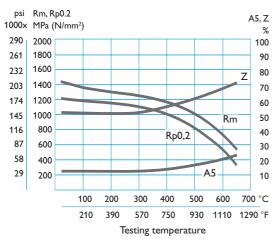
Mechanical properties

TENSILE STRENGTH

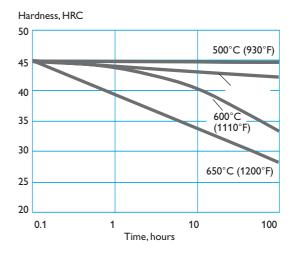
Hardness	310 HB*	44 HRC**	47 HRC***
Ultimate tensile strength Rm, MPa kp/mm ² tsi psi	1 030 105 67 149 000	1440 147 93 208 000	1600 163 103 232 000
Yield tensile strength Rp0,2, MPa kp/mm ² tsi psi	760 77 49 110 000	1230 125 79 178 000	1320 134 85 191 000
Elongation A _{5,} %	15	12	12
Reduction of area Z, %	53	52	52

COMPRESSIVE STRENGTH

Hardness	310 HB*	44 HRC**	47 HRC***
Yield			
compression			
strength, Rc0.2			
MPa	855	1 380	1 470
kp/mm ²	87	141	150
tsi	55	89	95
psi	124 000	200 000	213 000
•			


* Soft annealed condition.

** Delivery condition


****1020°C (1870°F) / 30 min., air quenching, 550°C (1020°F) / 2 x 2 h.

TENSILE PROPERTIES AT ELEVATED TEMPERATURE

Longitudinal direction.

TEMPER RESISTANCE

Heat treatment

Soft annealing

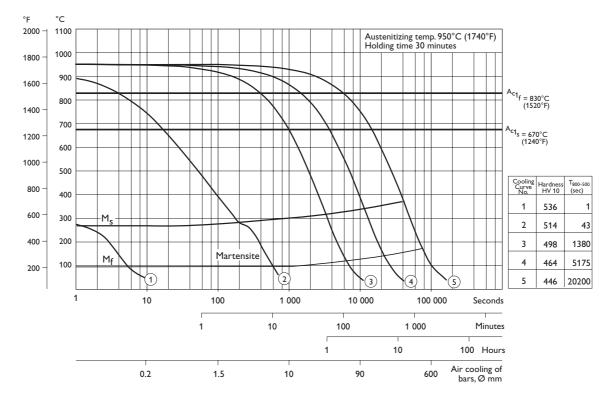
Protect the steel and heat through to 650° C (1200°F), holding time 24 hours. Then cool freely in air.

Stress relieving

When machining hardened and tempered material in delivery condition, after rough machining the tool should be heated through to 550°C (1025°F) holding time 2 hours. Cool freely in air.

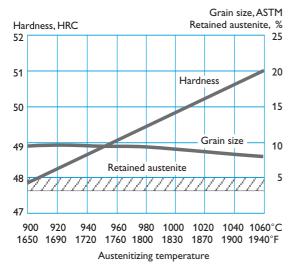
When machining soft annealed material, after rough machining the tool should be heated through to 650°C (1200°F), holding time 2 hours. Cool slowly to 500°C (930°F) and then freely in air.

Hardening


Pre-heating temperature: 500–650°C (930– 1200°F), normally in two pre-heating steps. Austenitizing temperature: 900–1050°C (1650– 1920°F), normally 960–1020°C (1760–1870°F).

Temperature		Soaking time*	Hardness before
°C °F		minutes	tempering
960	1760	30	49 ±1 HRC
1000	1830	30	50 ±1 HRC
1020	1870	30	51 ±1 HRC

*Soaking time = time at hardening temperature after the tool is fully heated through


Protect the part from decarburization during hardening.

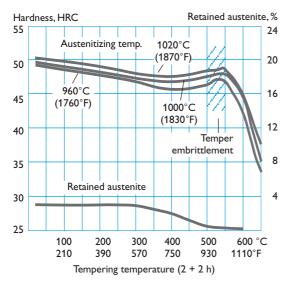
Austenitizing temperature 950°C (1740°F). Holding time 30 minutes.

HARDNESS, GRAIN SIZE AND RETAINED AUSTENITE AS FUNCTIONS OF AUSTENITIZING TEMPERATURE

Quenching media

- High speed gas/circulating atmosphere
- Vacuum (high speed gas with sufficient positive pressure). An interrupted quench at 320–450°C (610–840°F) is recommended where distortion control and quench cracking are a concern
- Martempering bath or fluidized bed at 450–550°C (840–1020°F), then cool in air
- Martempering bath or fluidized bed at approx. 180–200°C (360–390°F), then cool in air
- Warm oil, approx. 80°C (180°F)

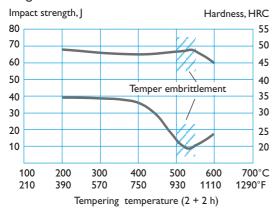
Note 1: Temper the tool as soon as its temperature reaches $50-70^{\circ}C$ (120-160°F).


Note 2: In order to obtain the optimum properties of the tool, the cooling rate should be fast, but not at a level that gives excessive distortion or cracks.

Tempering

Choose the tempering temperature according to the required hardness by reference to the tempering graph. Temper twice with intermediate cooling to room temperature. The lowest tempering temperature is 200°C (390°F). Holding time at temperature is minimum 2 hours.

To avoid "temper brittleness", do not temper in the range 500–550°C (930–1020°F), see graph.


TEMPERING GRAPH

Above tempering curves are obtained after heat treatment of samples with a size of $15 \times 15 \times 40$ mm, cooling in forced air. Lower hardness can be expected after heat treatment of tools and dies due to factors like actual tool size and heat treatment parameters.

EFFECT OF TEMPERING TEMPERATURE ON ROOM TEMPERATURE CHARPY V-NOTCH IMPACT ENERGY

Longitudinal direction.

Dimensional changes

During hardening and tempering the component is exposed to both thermal and transformation stresses. These stresses will result in distortion. In order to predict maximum levels of distortion with a proper quench, a stress relief is always recommended between rough and semi-finish machining, prior to hardening.

The dimensional changes were measured after austenitizing at 1020°C (1870°F) for 30 minutes following by quenching.

Sample plate 100 x 100 x 100 mm, 4" x 4" x 4".

		Width %	Length %	Thickness %
Oil hardened from m	iin	+0.02	-0.14	+0.04
1020°C (1870°F) ma	ax	+0.27	+0.10	+0.28
Air hardened from m	iin	+0.01	-0.09	-0.03
1020°C (1870°F) ma	ax	+0.15	-0.19	+0.11
Vacuum hardened from m		+0.09	-0.03	+0.11
1020°C (1870°F) ma		+0.13	-0.08	+0.20

DIMENSIONAL CHANGES DURING HARDENING

	sional ch	anges %				_	
+0.12							
+0.08							
+0.04							
0							
-0.04							
						\sim	
-0.08							
-0.12							
		00 20		00 40			00°C
	2	10 39	90 57	70 75	50 93	30 11 [.]	10°F
		Ter	npering	tempera	ture (2h	+ 2h)	

DIMENSIONAL CHANGES DURING TEMPERING

Note: The dimensional changes occurring during hardening and tempering are cumulative.

Surface treatment

Nitriding and nitrocarburizing

Nitriding and nitrocarburizing result in a hard surface layer which is very resistant to wear and erosion. The nitrided layer is, however, brittle and may crack or spall when exposed to mechanical or thermal shock, the risk increasing with layer thickness.

Nitriding in ammonia gas at 510° C (950° F) or plasma nitriding in a 75% hydrogen/25% nitrogen mixture at 480° C (895° F) result in a surface hardness of about 1100 HV_{0.2}. In general, plasma nitriding is the preferred method because of better control over nitrogen potential; in particular, formation of the so-called white layer, which is very brittle, can readily be avoided. However, careful gas nitriding can give perfectly acceptable results.

Uddeholm Balder can also be nitrocarburized in either gas or salt baths to produce a surface hardness of 900–1000 $HV_{0.2}$.

NITRIDING DEPTH

Process	Time hours	Nitridin mm	g depth inch
Gas nitriding at 510°C (950°F)	10 30 60	0.12 0.20 0.28	0.005 0.008 0.011
Plasma nitriding at 480°C (895°F)	10 30 60	0.12 0.18 0.22	0.004 0.007 0.009

Nitriding to case depths more than 0,3 mm (0,012 inch) is not recommended for components intended for high-temperature applications. Uddeholm Balder can also be nitrided in the soft-annealed condition, although the hardness and depth of the nitrided layer will be somewhat reduced.

Case hardening

The intention with the case hardening is to obtain a hard wear resistant surface and a tough core. The surface will achieve a hardness of 60 \pm 2 HRC and the core a hardness of 50 \pm 2 HRC.

Final grinding operations, in order to achieve correct dimensions, should be performed as a last operation after case hardening.

Pre-oxidation is done in order to avoid uneven carburization. If different furnaces are used for pre-oxidation and carburization, the part has to be transferred between the furnaces as quick as possible.

ALTERNATIVE 1

Pre-oxidation: 400°C (750°F), holding time 1 hour.

Carburizing:

900°C (1650°F), carbon potential 0.75, holding time is set due to requested case hardened depth.

Cooling:air, then liquid nitrogen -196°C (-320 °F). *Tempering*: 260°C (500°F), holding time 2 x 1 hour.

ALTERNATIVE 2

Pre-oxidation: 400°C (750°F), holding time 1 hour.

Carburizing:

Step 1. 880°C (1615°F), carbon potential 0.6, holding time 3 hours. Time is set due to requested case hardened depth.

Step 2.880°C (1615°F), carbon potential 0.4, holding time 10 minutes.

Step 3.840°C (1545°F), carbon potential 0.4, holding time 20 minutes.

Cooling: air, then cold water $5^{\circ}C$ (40°F).

Tempering: $180^{\circ}C$ (355°F), holding time 2 x 1 hour.

Carburizing time in step 1	Case hardening depth approx. mm inch		
2 hours	~0.4	~0.016	
4 hours	~0.7	~0.028	
16 hours	~1.3	~0.051	

Cutting data recommendations

The cutting data below for Uddeholm Balder are to be considered as guiding values, which should be adapted to existing local conditions.

Delivery condition: hardened and tempered 42–45 HRC

Turning

	Turning with carbide			
Cutting data parameters	Rough turning	Fine turning		
Cutting speed (v _c) m/min f.p.m.	90–110 290–360	110–130 360–430		
Feed (f) mm/r i.p.r	0.2–0.4 0.008–0.016	0.05–0.2 0.002–0.008		
Depth of cut (a _p) mm inch	2–4 0.08–0.16	0.5–2 0.02–0.08		
Carbide designaton ISO	P10–P15 Coated carbide	P10 Coated carbide or cermet		

Milling

FACE AND SQUARE SHOULDER MILLING

Cutting data	Milling wit	h carbide
Cutting data parameter	Rough milling	Fine milling
Cutting speed (v _c) m/min f.p.m.	70–90 230–290	90–110 290–360
Feed (f _z) mm/tooth inch/tooth	0.15–0.25 0.006–0.01	0.10–0.20 0.004–0.008
Depth of cut (a _p) mm inch	2–4 0.08–0.16	-2 -0.08
Carbide designation ISO	P20–P40 Coated carbide	P10–P20 Coated carbide or cermet

END MILLING

	Type of end mill				
Cutting data parameters	Solid carbide	Carbide indexable insert	High speed steel		
Cutting speed, (v _c) m/min f.p.m.	90–110 290–360	110–130 360–430	8–10 ²⁾ 26–33 ²⁾		
Feed (f _z) mm/tooth inch/tooth	0.03–0.15 ¹⁾ 0.0012–0.006	0.08–0.15 ¹⁾ 0.003–0.006	0.05–0.20 ¹⁾ 0.002–0.008		
Carbide designation ISO	"Micrograin" Coated carbide	P15–P30 Coated carbide	-		

¹⁾ Depending on radial depth of cut and cutter diameter

²⁾ For coated HSS end mill $v_c = 10-15$ m/min. (33-49 f.p.m.)

Drilling

TICN-COATED HIGH SPEED STEEL DRILL

Drill diameter Ø mm inch		Cutting speed (v _c)		Feed (f) mm/r _ i.p.r.	
	men	110/11011	i.p.in.	11111/1	i.p.i.
-5	-3/16	12–17	40–55	0.03–0.15	0.001-0.006
5–10	3/16–3/8	12–17	40–55	0.15–0.20	0.006-0.008
10–15	3/8–5/8	12–17	40–55	0.20-0.25	0.008-0.01 0
15–20	5/8—3/4	12–17	40–55	0.25–0.30	0.010-0.012

CARBIDE DRILL

	Type of drill			
Cutting data parameters	Indexable insert	Solid carbide	Carbide tip ¹⁾	
Cutting speed , (v _c) m/min f.p.m.	100–120 330–390	90–110 300–360	50–60 165–200	
Feed (f) mm/r i.p.r	0.05–0.10 ²⁾ 0.002–0.004 ²⁾	0.05-0.15 ³⁾ 0.002-0.006 ³⁾	0.10–0.15 ⁴⁾ 0.004–0.006 ⁴⁾	

 $\overline{}^{(1)}$ Drill with replaceable or brazed carbide tip

²⁾ Feed rate for drill diameter 20–40 mm (0.8"-1.6")

³⁾ Feed rate for drill diameter 5–20 mm (0.2"–0.8")

⁴⁾ Feed rate for drill diameter 10–20 mm (0.4"–0.8")

Indexable insert face milling cutter

Soft annealed condition ~310 HB

Turning

	Tu with	Turning with high speed steel	
Cutting data parameters	Rough turning	Fine turning	Fine turning
Cutting speed (v _c) m/min f.p.m.	120–170 390–560	170–220 560–720	15–20 50–65
Feed (f) mm/r i.p.r	0.2–0.4 0.008–0.016	0.05–0.2 0.002–0.008	0.05–0.3 0.002–0.012
Depth of cut (a _p) mm inch	24 0.080.16	0.5–2 0.02–0.08	0.5–3 0.02–0.12
Carbide designation ISO	P10–P15 Coated carbide	P10 Coated carbide or cermet	_

Milling

FACE AND SQUARE SHOULDER MILLING

Cutting data	Milling with carbide		
parameter	Rough milling	Fine milling	
Cutting speed (v _c) m/min f.p.m.	80–150 260– 4 90	150–190 490–620	
Feed (f _z) mm/tooth inch/tooth	0.2–0.4 0.008–0.016	0.1–0.2 0.004–0.008	
Depth of cut (a _p) mm inch	2–5 0.08–0.2	-2 -0.08	
Carbide designation ISO	P20–P40 Coated carbide	P10–P20 Coated carbide or cermet	

END MILLING

	Type of end mill		
Cutting data parameters	Solid carbide	Carbide indexable insert	High speed steel
Cutting speed (v _c) m/min f.p.m.	120–140 390–460	130–150 430–490	25–30 ¹⁾ 80–100
Feed (f _z) mm/tooth inch/tooth	0.03–0.20 ²⁾ 0.0012–0.008	0.08–0.20 ²⁾ 0.003–0.008	0.05–0.35 ²⁾ 0.002–0.014
Carbide designation ISO	"Micrograin" Coated carbide	P20–P30 Coated carbide	_

 $^{1)}$ For coated HSS end mill v_c = 40–45 m/min. (130–150 f.p.m.) $^{2)}$ Depending on radial depth of cut and cutter diameter

Drilling

HIGH SPEED STEEL TWIST DRILL

Drill diameter Ø mm ₁ inch		Cutting speed (v _c) m/min f.p.m.		Feed (f) mm/r i.p.r.	
-5	-3/16	20–22*	65–70*	0.08-0.20	0.003-0.008
5–10	3/16-3/8	20–22*			0.008-0.012
10–15	3/8–5/8	20–22*	65–70*	0.30-0.35	0.012-0.014
15–20	5/8–3/4	20–22*	65–70*	0.35–0.40	0.014-0.016

* For coated HSS drill v_c = 30–35 m/min. (100–115 f.p.m)

CARBIDE DRILL

	Type of drill			
Cutting data parameters	Indexable insert	Solid carbide	Carbide tip ¹⁾	
Cutting speed (v _c) m/min f.p.m.	180–200 600–670	120–150 390– 4 90	90–120 295–390	
Feed (f) mm/r i.p.r.	0.06-0.15 ²⁾ 0.002-0.006 ²⁾	0.08–0.30 ³⁾ 0.003–0.012 ³⁾	0.15–0.25 ⁴⁾ 0.006–0.01 ⁴⁾	

¹⁾ Drill with replaceable or brazed carbide tip

²⁾ Feed rate for drill diameter 20–40 mm (0.8"–1.6")

³⁾ Feed rate for drill diameter 5–20 mm (0.2"–0.8")

⁴⁾ Feed rate for drill diameter 10–20 mm (0.4"-0.8")

Grinding

A general grinding wheel recommendation is given below. More information can be found in the Uddeholm brochure "Grinding of Tool Steel".

Type of grinding	Soft annealed condition	Hardened condition
Face grinding straight wheel	A 46 HV	A 46 GV
Face grinding segments	A 24 GV	A 36 GV
Cylindrical grinding	A 46 LV	A 60 KV
Internal grinding	A 46 JV	A 60 JV
Profile grinding	A 100 KV	A 120 JV

Flame, induction and laser hardening

Uddeholm Balder can be flame or induction hardened to a hardness of approx. 54–56 HRC. Austenitizing temperature is $1000-1100^{\circ}C$ (1830–2010°F). Cooling in air is preferable. Tempering at 180–220°C (360–430°F) is recommended after flame, induction or laser hardening. Holding time 2 x 1 hour.

PVD coating

Uddeholm Balder can be given a PVD coating without reducing the hardness of the component.

Hard-chromium plating

After plating, parts should be tempered at 180°C (360°F) for 4 hours to avoid risk of hydrogen embrittlement.

Electrical-discharge machining, EDM

If spark-erosion is performed in the hardened and tempered condition, the white re-cast layer should be removed mechanically, e.g. by grinding or stoning. The component should then be given an additional temper at approx. 550°C (1025°F), holding time 2 hours.

Welding

Welding of Uddeholm Balder can be performed with good results if proper precautions are taken regarding elevated temperature, joint preparation, choice of consumables and welding procedure.

Welding method	TIG	MMA		
Preheating temperature*	325–375°C 620–710°F	325–375°C 620–710°F		
Consumables	DIEVAR TIG-WELD QRO 90 TIG-WELD UTP A 73G2	QRO 90 WELD UTP 73G2		
Cooling rate	20–40°C/h (35–70°F/h) the first 2–3 hours, then freely in air.			
Hardness as welded	48–53 HRC (DIEVAR, QRO 90) 53–56 HRC (A 73G2)	48–53 HRC (QRO 90) 55–58 HRC (73G2)		
Heat treatment after welding				
Hardened and tempered condition	Temper at 550°C (1025°F), holidng time 2 hours.			
Soft annealed condition	Soft anneal the material at 650°C (1200°F) 24 hours. Cool freely in air.			

* Preheating can be excluded in cases where you could expect low stress level (minor welds).

More detailed information can be found in the Uddeholm brochure "Welding of Tool Steel".

Further information

Please, contact your local Uddeholm office for further information on the selection, heat treatment, application and availability of Uddeholm tool steel.

Network of excellence

UDDEHOLM is present on every continent. This ensures you high-quality Swedish tool steel and local support wherever you are. ASSAB is our exclusive sales channel, representing Uddeholm in the Asia Pacific area. Together we secure our position as the world's leading supplier of tooling materials.

UDDEHOLM is the world's leading supplier of tooling materials. This is a position we have reached by improving our customers' everyday business. Long tradition combined with research and product development equips Uddeholm to solve any tooling problem that may arise. It is a challenging process, but the goal is clear – to be your number one partner and tool steel provider.

Our presence on every continent guarantees you the same high quality wherever you are. ASSAB is our exclusive sales channel, representing Uddeholm in the Asia Pacific area. Together we secure our position as the world's leading supplier of tooling materials. We act worldwide, so there is always an Uddeholm or ASSAB representative close at hand to give local advice and support. For us it is all a matter of trust – in longterm partnerships as well as in developing new products. Trust is something you earn, every day.

For more information, please visit www.uddeholm.com, www.assab.com or your local website.

PROBLEMS AUTOHOTIVE