CUTTING DATA RECOMMENDATIONS

Uddeholm Nimax

Machining data are always dependent on the actual operation, the machine tool and the cutting data used. The machining data given is this datasheet are general guidelines that may have to be adjusted to the actual conditions of a specific machining operation.

Turning

Cutting data formulae

Cutting speed,
$$v_c = \frac{\pi \cdot D \cdot n}{1000}$$
 (m/min)
Spindle speed, $n = \frac{1000 \cdot v_c}{\pi \cdot D}$ (rev/min)
Material removal rate, $Q = v_c \cdot a_p \cdot f$ (cm³/min)
Surface roughness, $R_a \approx \frac{f^2 \cdot 50}{r_c}$ (μ m)

Milling

$$v_{c} = \frac{\pi \cdot D \cdot n}{1000} (m/\min)$$

$$n = \frac{1000 \cdot vc}{\pi \cdot D} (rev/\min)$$

$$vf = fz \cdot z \cdot n = f \cdot n(mm/\min)$$

$$D_{eff} = 2 \cdot \sqrt{ap (D - ap)} (mm)$$

$$D_{eff} = 2 \cdot \sqrt{ap (D - ap)} + D - D_{i} (mm)$$

$$h_{m} = fz \cdot \sqrt{\frac{ae}{D}} (mm) \frac{ae}{D} < 0.3$$

$$Q = \frac{ap \cdot ae \cdot vf}{1000} (cm^{3}/\min)$$

Drilling

Cutting speed,
$$v_c = \frac{\pi \cdot D \cdot n}{1000}$$
 (m/min)
Spindle speed, $n = \frac{1000 \cdot v_c}{\pi \cdot D}$ (rev/min)
Feed speed, $v_f = f \cdot n$ (mm/min)
Feed per rev, $f = \frac{v_f}{n}$ (mm/rev)

Legend

f

- v_c = Cutting speed (m/min)
- n = Spindle speed (rev/min)
 - = Feed per rev (mm/rev)
- a_p = Axial depth of cut (mm)
- D = Workpiece diameter (mm)
- Q = Material removal rate (cm^3/min)
- R_a = Surface roughness (µm)
- r_e = Nose radius (mm)
- Legend Vc = Cutting speed (m/min) = Spindle speed (rev/min) n = Feed speed (mm/min) Vf = Axial depth of cut (mm) a_p \mathbf{a}_{e} = Radial depth of cut (mm) = Feed per rev (mm/rev) f = Number of teeth z = Feed per tooth (mm/tooth) f_z D = Cutter diameter (mm) D_{eff} = Effective cutter diameter (mm) Di = Diameter of insert (mm) = Average chip thickness (mm) h_m = Material removal rate (cm³/min) Q D

Legend

- v_c = Cutting speed (m/min)
- n = Spindle speed (rev/min)
- v_f = Feed speed (mm/min)
- D = Drill diameter (mm)
- f = Feed per rev (mm/rev)

Turning

Uddeholm Nimax

	Cemente	HSS	
	Roughing	Finishing	
Cutting speed, v_c (m/min)	100-150	150-200	10-15
Feed, f (mm/rev)	0,2-0,4	0,05-0,2	0,05-0,3
Depth of cut, a _p (mm)	2-4	0,5-2	0,5-3
Suitable grades	P20-P30 coated carbide	P10 coated carbide or	
		cermet	

Remarks:

- 1. Cutting fluid is recommended.
- 2. For turning with interrupted cut or face turning of large workpieces use a thougher cemented carbide grade.

Face milling

Face milling								
	Cemented carbide							
	Roughing	Finishing						
Cutting speed, v_c (m/min)	110-150	150-180						
Feed, f _z (mm/tooth)	0,2-0,4	0,1-0,2						
Depth of cut, a _p (mm)	2-5	-2						
	P20-P40 coated carbide	P10-P20 coated carbide						
Suitable grades		or cermet						

Remarks:

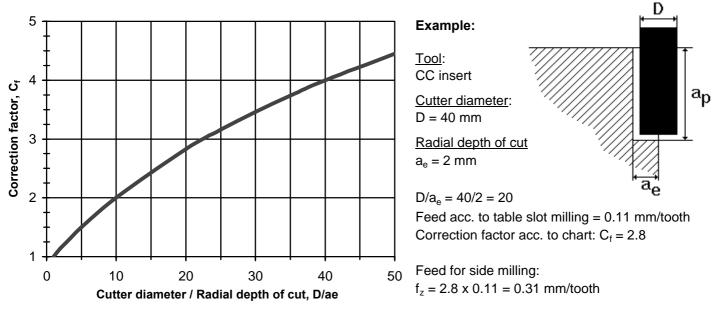
- 1. Use a milling cutter with a positive-negative or positive-positive geometry.
- 2. Climb milling should generally be used.
- 3. Milling should generally be done without coolant.
- If a high surface finish is required coolant may be used.
- 4. Cermets can be of use when finishing under stable conditions.

Square shoulder milling

Square shoulder milling with cemented carbide							
······································	a _e = 0.1 x D	a _e = 0.5 x D	a _e = 1 x D				
Cutting speed, v _c (m/min)	100-140	90-130	80-120				
Feed, f _z (mm/tooth)	0,25-0,3	0,15-0,2	0,1-0,15				
Suitable grades	P15-P40 coated carbide						

Remarks:

- 1. Climb milling should generally be used.
- 2. Choose the cutter diameter (D) and the radial depth of cut (a_e) so that at least two cutting edges are engaged simultaneously.
- 3. If the machine tool power is inadequate for the data given reduce the depth of cut, but do not reduce the feed.


End milling

Uddeholm Nimax

Slot milling						
Axial depth of cut, a _p = ≤1 x D		Cutter diameter (mm)				
		3 - 5	5 - 10	10 - 20	20 - 30	30 - 40
Uncoated HSS ¹⁻⁴⁾	Cutting speed, v_c (m/min)			10-15		
	Feed, f _z (mm/tooth)	0,008-0,02	0,02-0,03	0,03-0,04	0,04-0,05	0,05-0,08
Coated HSS ¹⁻⁴⁾	Cutting speed, v_c (m/min)			25-30		
	Feed, f _z (mm/tooth)	0,015-0,03	0,03-0,04	0,04-0,05	0,05-0,06	0,06-0,09
Solid cemented	Cutting speed, v_c (m/min)		70-110	-		-
carbide 5-8)	Feed, f _z (mm/tooth)	0,006-0,01	0,01-0,02	0,02-0,04		
Indexable insert 6-8)	Cutting speed, v_c (m/min)				80-120	
(cemented carbide	Feed, f _z (mm/tooth)			0,06-0,08	0,08-0,10	0,10-0,12
inserts)	Suitable grades			P15-	P40 coated ca	irbide
Side milling		For side millin	ng the same cu	utting speed as	for slot milling	can
Axial depth of cut, a _p = ≤1.5 x D		be used, but the feeds must be adjusted in order to obtain a				n a
		suitable avera	age chip thickn	iess.		

Correction factor for side milling

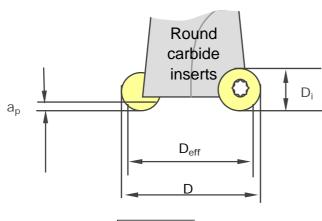
Divide the cutter diameter with the radial depth of cut. See in the chart below which correction factor, C_f, this corresponds to, and multiply the chosen feed in the table for slot milling with this factor.

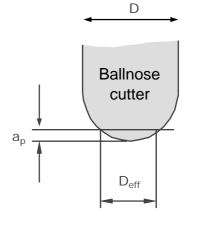
Remarks: (slot and side milling)

- 1. Climb milling is generally recommended.
- 2. Use a cutter with chipbreaker when side milling with radial depths of cut, $a_e > 0.3 \text{ xD}$.
- 3. When side milling with small radial depths of cut (a $_{e}$) the cutting speed can be increased by up to 15%.
- 4. Use liberal amounts of cutting fluid.
- 5. It is recommended to use a TiCN coated cutter when milling with solid cemented carbide tools.
- The axial depth of cut should not exceed the cutter diameter when slot milling.6. Climb milling is generally recommended.
- 7. When side milling with small radial depths of cut (a _e) the cutting speed can be increased by up to 30%.
- 8. The radial run-out, at the cutting edges, must be small and not exceed 0.03 mm.

Cavity milling with carbide

Uddeholm Nimax


Rough milling with round carbide inserts		Diameter of cutter, D (mm)				
	GO	<20	21-30	31-40	41-50	>50
Axial depth of cut.	Cutting speed v_c (m/min)			160-180		
•	Feed f _z (mm/tooth)	-0,18	0,19-0,21	0,22-0,24	0,25-0,27	0,28-
round carbide inserts Axial depth of cut, $ap = 0,2 \times D_i$ Axial depth of cut, $ap = 0,15 \times D_i$ Axial depth of cut, $ap = 0,1 \times D_i$ Axial depth of cut, $ap = 0,05 \times D_i$	Cutting speed v_c (m/min)	180-200				
	Feed f _z (mm/tooth)	-0,2	0,21-0,23	0,24-0,26	0,27-0,29	0,3-
Axial depth of cut.	Cutting speed v_c (m/min)	200-220				
•	Feed f _z (mm/tooth)	-0,23	0,24-0,26	0,27-0,29	0,3-0,32	0,33-
Axial depth of cut	Cutting speed v_c (m/min)	220-240				
•	Feed f _z (mm/tooth)	-0,31	0,32-0,34	0,35-0,37	0,38-0,4	0,41-
$D_i = Diameter of the insert$						


= Diameter of the insert

Rough milling with high feed cutters		<20	Diamet 21-30	er of cutter, I 31-40	D (mm) 41-50	>50
Axial depth of cut,	Cutting speed v_c (m/min)			140-160		
ap = 70% of max ¹⁾	Feed f _z (mm/tooth)	-0,6	0,6-0,8	0,8-1,0	1,0-1,2	1,2-
Axial depth of cut,	Cutting speed v_c (m/min)			160-180		
$ap = 50\% \text{ of max}^{1)}$	Feed f _z (mm/tooth)	-0,8	0,8-1,0	1,0-1,2	1,2-1,4	1,4-

¹⁾ Per centage of maximum depth of cut allowed (according to milling tool supplier)

Semi finishing and finishing milling with b	allnose cutters	<6	Diamet 6-8	er of cutter, 8-10	D (mm) 10-12	>12
Semi finishing Axial depth of cut,	Cutting speed v_c (m/min)			160-200		
ap = 5% of D (Ø cutter)	Feed f _z (mm/tooth)	-0,08	0,08-0,10	0,10-0,12	0,12-0,14	0,14-
Finishing	Cutting speed v_c (m/min)			200-240		
Axial depth of cut, ap = 2% of D (Ø cutter)	Feed f _z (mm/tooth)	-0,12	0,12-0,14	0,14-0,16	0,16-0,18	0,18-

$$D_{eff} = 2 \cdot \sqrt{ap(D_i - ap) + D - D_i(\text{mm})}$$

 $D_{eff} = 2 \cdot \sqrt{ap (D - ap)} (mm)$

Remarks cavity milling:

- 1. Down milling strategy is recommended
- 2. Recommended cutting speeds are at the effective cutter diameter (D_{eff})
- 3. Reduce the cutting speed and feed rate by 20% when using tool overhang >5xD
- 4. The radial depht of cut (ae) should be maximum 70% of the effective cutter diameter (D eff)
- 5. A tough PVD coated carbide grade with sharp edge geometry is recommended

Uddeholm Nimax

Drilling

		Dri	II diameter (m	ım)	
	1 - 5	5 - 10	10 - 20	20 - 30	30 - 40
Cutting speed, v_c (m/min)			12-14		
Feed, f (mm/rev)	0,03-0,10	0,10-0,20	0,20-0,25	0,25-0,30	0,30-0,35
Cutting speed, v_c (m/min)			18-20		
Feed, f (mm/rev)	0,05-0,15	0,15-0,25	0,25-0,35	0,35-0,40	0,40-0,45
Cutting speed, v_c (m/min)				150	-170
Feed, f (mm/rev)				0,03-0,08	0,08-0,12
Cutting speed, v_c (m/min)			100	-130	
Feed, f (mm/rev)		0,05-0,08	0,08-0,15	0,15-0,20	0,20-0,25
Cutting speed, v_c (m/min)				90-110	
Feed, f (mm/rev)			0,10-0,20	0,20-0,30	0,30-0,35
	Feed, f (mm/rev) Cutting speed, v _c (m/min) Feed, f (mm/rev) Cutting speed, v _c (m/min) Feed, f (mm/rev) Cutting speed, v _c (m/min) Feed, f (mm/rev) Cutting speed, v _c (m/min)	Cutting speed, v_c (m/min)Feed, f (mm/rev)0,03-0,10Cutting speed, v_c (m/min)Feed, f (mm/rev)0,05-0,15Cutting speed, v_c (m/min)Feed, f (mm/rev)Cutting speed, v_c (m/min)	1 - 5 5 - 10 Cutting speed, v _c (m/min) - Feed, f (mm/rev) 0,03-0,10 0,10-0,20 Cutting speed, v _c (m/min) - - Feed, f (mm/rev) 0,05-0,15 0,15-0,25 Cutting speed, v _c (m/min) - - Feed, f (mm/rev) 0,05-0,15 0,15-0,25 Cutting speed, v _c (m/min) - - Feed, f (mm/rev) 0,05-0,08 - Cutting speed, v _c (m/min) - - Feed, f (mm/rev) 0,05-0,08 - Cutting speed, v _c (m/min) - -	1 - 5 5 - 10 10 - 20 Cutting speed, v _c (m/min) 12-14 12-14 Feed, f (mm/rev) 0,03-0,10 0,10-0,20 0,20-0,25 Cutting speed, v _c (m/min) 18-20 18-20 Feed, f (mm/rev) 0,05-0,15 0,15-0,25 0,25-0,35 Cutting speed, v _c (m/min) Feed, f (mm/rev) 0,05-0,15 0,15-0,25 Cutting speed, v _c (m/min) Feed, f (mm/rev) 100 Feed, f (mm/rev) 0,05-0,08 0,08-0,15 Cutting speed, v _c (m/min) 100 100	$\begin{array}{c c} \mbox{Cutting speed, v_c (m/min)} & 12-14 \\ \hline \mbox{Feed, f} (mm/rev) & 0,03-0,10 & 0,10-0,20 & 0,20-0,25 & 0,25-0,30 \\ \hline \mbox{Cutting speed, v_c (m/min)} & 18-20 \\ \hline \mbox{Feed, f} (mm/rev) & 0,05-0,15 & 0,15-0,25 & 0,25-0,35 & 0,35-0,40 \\ \hline \mbox{Cutting speed, v_c (m/min)} & 150 \\ \hline \mbox{Feed, f} (mm/rev) & 0,03-0,08 \\ \hline \mbox{Cutting speed, v_c (m/min)} & 100-130 \\ \hline \mbox{Feed, f} (mm/rev) & 0,05-0,08 & 0,08-0,15 & 0,15-0,20 \\ \hline \mbox{Cutting speed, v_c (m/min)} & 90-110 \\ \hline \mbox{Cutting speed, v_c (m/min)} & 100 \\ \hline \mbox{Cutting speed, v_c (m/min)} & 100-130 \\ \hline \mbox{Cutting speed, v_c (m/min)} & 100-110 \\ \hline \mbox{Cutting speed, v_c (m/min)} & 100-10 \\ \hline \mbox{Cutting speed, v_c (m/min)} & 100-10 \\ \hline \\mbox{Cutting speed, v_c (m/min)} & 100-10 $

Remarks:

- 1. The cutting fluid should be ample and directed at the tool.
- 2. For extra long drills the feed must be decreased.
- 3. Use insert grades in the range of ISO P20-P30.

Under unstable conditions a tougher carbide grade should be used for the centre position.

- 4. Use a high cutting fluid pressure and flow rate for a good chip removal.
- 5. If machining with solid carbide or carbide tipped drills, a rigid set-up and stable working conditions are required.
- 6. The use of drills with internal cooling channels is recommended.
- 7. Use a cutting fluid concentration of 15-20 %.
- 8. For small drills "peck drilling" is needed for chip breaking

Tapping with HSS

Cutting speed, v_c = 5-8 m/min

Remarks:

- 1. Threading compound or cutting oil gives a longer tool life than emulsion.
- 2. TiCN coated taps are recommended.
- 3. Straight fluted taps are recommended for both through holes and blind holes.